

Automotive Electronics Robert Bosch GmbH, Reutlingen

125 Bosch Automotive Electronics

BOSCH

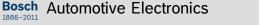
125 Bosch Automotive Electronics

3

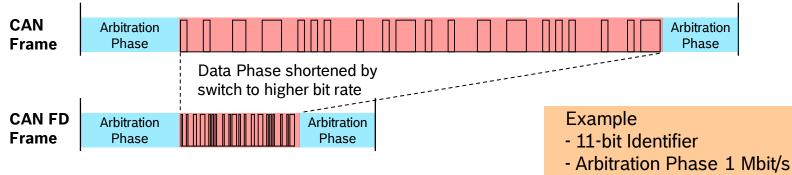
Motivation

- Increasing demand for bandwidth in automotive communication
- Close gap between CAN (max. 1 MBit/s) and FlexRay (10 MBit/s)
- Time-triggered communication not flexible enough
- High effort for migration to FlexRay / Ethernet
 - Hardware costs
 - Software changes

\rightarrow Make CAN faster !


Approach

- Unchanged
 - CAN arbitration
 - CAN acknowledge mechanism
- → New


5

- switch to higher bit rate for transmission of
 - Data Length Code
 - Data Field
 - Frame CRC
- data fields with more than eight bytes possible
 - configured by unused DLC codes "1001" to "1111"
 - e.g. 12, 16, 20, 24, 32, 48, 64 bytes (t.b.d.)
- new CRC polynomials for longer data fields, HD=6

Approach

- Based on existing CAN
 - well known technology, minimized risk
 - changes limited to HW: protocol controller
 - for bit rates up 1 MBit/s standard CAN transceivers usable
 - **no changes to SW:** with 8 bytes data field (legacy SW fully compatible)
 - even higher data rate possible by data fields >8 bytes and SW change
- Costs similar to CAN
- Closing gap between CAN (max. 1 MBit/s) and FlexRay (10 MBit/s)
- 1st Demonstrator available

Bosch Automotive Electronics

h

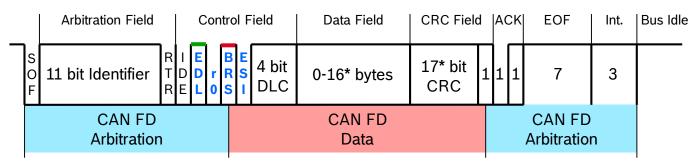
AE/EIY | 14/07/2011 | © Robert Bosch GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

4 Mbit/s

- Data Phase

 \rightarrow average bit rate 2.3 Mbit/s

CAN FD Frame Format


CAN FD makes use of the reserved bits of CAN and introduces new control bits:

- → EDL Extended Data Length
 - substitutes first reserved bit in standard frames
 - EDL = recessive indicates CAN FD frame format (new DLC-coding/CRC)
 - EDL = dominant indicates standard CAN frame format
- → r0 reserved bit
 - transmitted dominant, reserved for future protocol variants
- → BRS Bit Rate Switch
 - BRS = recessive: switch to alternate bit rate
 - BRS = dominant: do not switch bit rate
- → ESI Error State Indicator
 - ESI = recessive: transmitting node is error passive
 - ESI = dominant: transmitting node is error active

Bosch Automotive Electronics

CAN FD Standard Frame

*data fields with more than 16 bytes also supported (longer CRC)

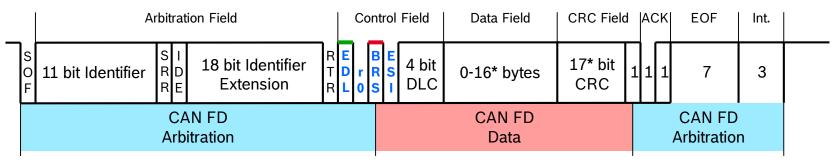
BRS – Bit Rate Switch

r0

ESI

EDL – Extended Data Length - dominant

Error State Indicator


- CAN FD Arbitration Phase ->
 - length: 30 bit times*
 - data rate: max. 1 MBit/s
- → CAN FD Data Phase
 - length: 86 bit times* with 8 data bytes
 - data rate: > 1 MBit/s
- * bit stuffing not considered

8

CAN FD Extended Frame

*data fields with more than 16 bytes also supported (longer CRC)

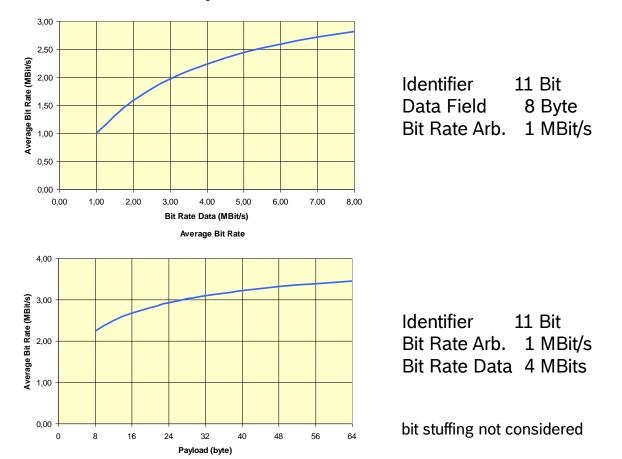
BRS – Bit Rate Switch

r0

ESI

EDL – Extended Data Length - dominant

Error State Indicator

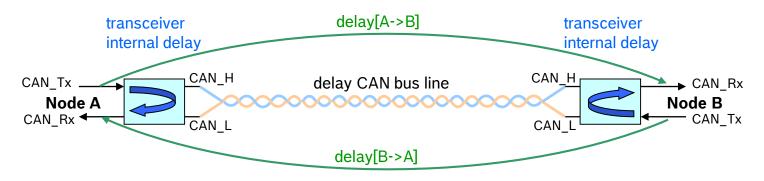

- CAN FD Arbitration Phase -
 - length: 49 bit times*
 - data rate: max. 1 MBit/s
- → CAN FD Data Phase
 - length: 86 bit times* with 8 data bytes
 - data rate: > 1 MBit/s
- * bit stuffing not considered

Average Bit Rate

Average Bit Rate

125 Bosch Automotive Electronics

10


Application of CAN FD Features

- → CAN FD with Bit Rate Switching
 - increase net data rate
 - data length may be limited to 8 bytes for legacy SW
 - fast bit rate above 1 MBit/s
 - increase number of frames on CAN bus
 - fill gap between FlexRay and CAN
 - fast bit rate below 1MBit/s
 - long bus line may limit bit rate in arbitration to e.g. 50KBit/s, transmission of data field with e.g. 500KBit/s possible
 - no requalification or redesign of transceivers necessary
- → CAN FD w/o Bit Rate Switching
 - increase of payload to header ratio
 - no requalification or redesign of transceivers necessary
 - fall back in case of bus errors during fast bit rate

Bosch Automotive Electronics

Physical Layer

- → CAN Physical Layer
 - Transceiver internal delay CAN_Tx → CAN_Rx: up to 240ns
 - delay on CAN bus line: ~5ns/m
- CAN FD Arbitration Phase: arbitrate with remote nodes
 - Limitation: delay[$A \rightarrow B$] + delay[$B \rightarrow A$] <TSEG1*
- CAN FD Data Phase: monitor own transmissions
 - Limitation: transceiver internal delay <TSEG1*
 - independent of length of CAN bus line

*TSEG1 = Time Segment before Sample Point

Bosch Automotive Electronics

Introduction Scenario

- → Step 1: Single ECUs equipped with CAN FD
 - use CAN FD for SW download , other nodes in silent mode
 - network still operated as standard CAN network
- → Step 2: First CAN FD application
 - network completely operated as CAN FD network

Next Steps

- Validate CAN FD functionality in FPGA environment
 - check function of bit rate switching
 - check impact on physical layer
- → Complete Bosch CAN FD specification
- Contact OEMs, find first application
- Contact semiconductor companies
 - integrate CAN FD on µCs
 - develop CAN FD transceivers
- Contact CAN tool suppliers, integrate CAN FD support
- Upgrade Bosch CAN IP-modules to CAN FD
- Initiate ISO standardization
- Assure AUTOSAR support

Bosch 1886-2011 Automotive Electronics

